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Abstract

for therapy.

\

Colon cancer inter-tumour heterogeneity is installed on multiple levels, ranging from (epi)genetic driver events to
signalling pathway rewiring reflected by differential gene expression patterns. Although the existence of
heterogeneity in colon cancer has been recognised for a longer period of time, it is sparingly incorporated as a
determining factor in current clinical practice. Here we describe how unsupervised gene expression-based
classification efforts, amongst which the consensus molecular subtypes (CMS), can stratify patients in biological
subgroups associated with distinct disease outcome and responses to therapy. We will discuss what is needed to
extend these subtyping efforts to the clinic and we will argue that preclinical models recapitulate CMS subtypes and
can be of vital use to increase our understanding of treatment response and resistance and to discover novel targets
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Introduction

When diagnosed at early stages, colon cancer is asso-
ciated with good overall survival rates, but these numbers
rapidly decline in stage III or stage IV metastatic disease’.
The high heterogeneity of colon cancer on the genetic and
gene regulatory level contributes to differences in therapy
response and, consequently, survival’. In an era where
(semi-)individualised treatment can be more readily
achieved due to advancements and cost reductions in
various molecular biology techniques, scientists are
striving to map colon cancer heterogeneity and to deter-
mine which factors can function as better prognostic and
predictive markers for this disease. Molecular features are
however sparsely assessed in current clinical practice,
even though the histopathological parameters typically
used do not suffice to recognise high risk patients that
could benefit from alternative treatment strategies. This
review will provide numerous examples of how molecular
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characteristics can aid in guiding clinical decision making
and can improve outcome for colon cancer patients.
Over the last 10-15 years, the colon cancer research
field has moved from mainly assessing mutations to
measuring gene expression patterns to describe a broader
spectrum of colon cancer heterogeneity. While initially
used for dichotomisation into good and poor prognosis
patients, unsupervised clustering methods have revealed
that separation into strictly two groups does not reflect
the biological diversity that exists within colon cancer. We
will discuss how several layers of biological variance can
be identified by distinct gene expression-based methods
and will summarise how retrospective analysis of clinical
trials has revealed that this variance has consequences for
responses to currently used chemo- and targeted thera-
pies. These findings can importantly be extended to pre-
clinical models, thus this review aims to convey that these
models capture colon cancer heterogeneity and can
therefore be employed to optimise the efficiency of
available therapies and to find novel targets for treatment.

Standard of care for colon cancer

Current colon cancer classification, prognosis predic-
tion and therapy decision-making is mainly based on
(histo)pathological features. The tumour, lymph node,
metastasis (TNM) staging system functions as the back-
bone and uses anatomical information to stage a carci-
noma, in which predicted prognosis worsens as the stage
is increased’. Other factors known to influence prognosis
include histological differentiation grade, tumour sided-
ness and BRAF mutations. Poor differentiation grade is
associated with poor prognosis, as is the presence of a
BRAF mutation®™. Right-sidedness is also linked to
poorer outcome and survival, but only for a specific
subgroup of right-sided cancers®™®. Even though these
negative prognostic markers are recognised in the clinic,
their presence generally does not alter the treatment
given. An exception can be made in stage II where factors
such as a high T stage, poor differentiation grade and a
low number of examined regional lymph nodes are con-
sidered as markers for high risk of recurrence, and
patients can therefore be considered for more aggressive
treatment compared to other stage II patients’.

Generally speaking, a one-size-fits-all treatment
approach is used for each TNM stage of the disease.
Surgical removal of the primary tumour is the main pillar
of stage I-III colon cancer treatment. High-risk stage II
and all stage III patients are additionally treated with
adjuvant chemotherapy if the patient’s condition allows
for it; age is the primary determinant. The regimen con-
sists of folinic acid (leucovorin) and the chemother-
apeutics 5-fluorouracil (5-FU) or capecitabine, a prodrug
of 5-FU, and oxaliplatin (FOLFOX)®’. Administration of
chemotherapy to stage III patients increases overall
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survival, but the benefit for high-risk stage II patients has
been called into question™'’. In stage IV disease a min-
ority of metastatic lesions qualifies for surgery with
curative intentions, but the main first line treatment in the
metastatic setting currently consists of chemotherapy
with FOLFOX or leucovorin, 5-FU or capecitabine and
irinotecan (FOLFIRI) plus bevacizumab. The EGFR-
targeting antibody cetuximab is also used under the pre-
requisite of wildtype KRAS or BRAF status, as mutations
in these oncogenes render tumours insensitive to EGFR-
targeted therapy”'"'. Bevacizumab and cetuximab have
been simultaneously administered in the metastatic set-
ting, combined with chemotherapy, but this approach
decreases quality of life and does not improve overall
survival'?,

The major issue of the standardised staging and treat-
ment protocol is that it fails to identify the full cohort of
poor prognosis colon cancer patients that should receive
adjuvant therapy, and that it fails to predict which patients
benefit. Some stage II patients, for example, are not
categorised as high risk patients and yet eventually pre-
sent with recurrent disease. Some stage III patients
relapse even though they received adjuvant chemother-
apy, whereas some never relapse even when no adjuvant
chemotherapy was administered®. Consequently, some
patients are inadequately treated and some are over-
treated with chemotherapeutics that come with serious
side effects. Inter-tumour heterogeneity, caused by the
presence of distinct mutations and differential regulation
of gene expression across colon carcinomas from different
patients, is a contributor to these diverse responses as we
will substantiate in the next sections.

Colon cancer inter-tumour heterogeneity
Genetic heterogeneity in hereditary and sporadic colon
cancer

Part of colon cancer heterogeneity is installed at the
premalignant stage, driven by mutations and epigenetic
regulation affecting distinct biological pathways. They
give rise to two major classes of adenomas and carcino-
mas that exist in both hereditary and sporadic cases of
colon cancer.

The biggest class of sporadic colon cancer contains
inactivating mutations of the APC gene, detected in ~80%
of the cases'®. Somatic mutations in this gene can already
be found in early lesions such as dysplastic epithelium and
small, benign tubular adenomas'®. APC was initially
identified as the gene that is heterozygously mutated in
the germline of patients suffering from hereditary familial
adenomatous polyposis, which is associated with high
lifetime incidence of colon cancer'®'”. Taken together,
these observations fuel the notion that APC loss is the
initial driver event for the development of adenomas and
subsequent carcinomas'®'>'®'?, This gatekeeper role of
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APC can be attributed to its function in Wnt signalling,
the pathway that controls the self-renewal and pro-
liferative capacity of intestinal stem cells (ISC). Inactiva-
tion of APC through mutations or loss of heterozygosity
leads to aberrant activation of Wnt signalling'®*°, but
even in the presence of dysfunctional APC, some degree
of regulation of Wnt pathway activity is maintained to
optimally enable adenoma formation. This is genetically
determined by the location and nature of truncating APC
mutations on the two alleles, and microenvironmentally
by stromal production of, for example, Wnt ligands, R-
spondin and hepatocyte growth factor”’™°. Further
accumulation of mutations in well-known oncogenic
pathways facilitate the progression from early to high
grade adenoma and ultimately carcinoma. KRAS and
TP53 mutations are prevalent in early stages, and the
latter can contribute to the development of chromosomal
instability (CIN)*’. The PI3K and TGFB pathways are
frequently deregulated at later stages through mutation of
the PIK3CA and PTEN, and SMAD2 and SMAD4 genes,
respectively'®!>1817,

The second, smaller (~15%), class of colon cancer, is
characterised by high mutational load caused by defective
DNA mismatch repair (MMR)'. Repetitive DNA
sequences, such as microsatellites, are especially sensitive
to mutation due to dysfunctional MMR and high abun-
dance of microsatellite length alterations, a phenotype
known as microsatellite instability (MSI), is therefore used
as a surrogate read-out to establish MMR deficiency'®. A
small percentage of the MSI tumours arises through
genetic predisposition; individuals affected by hereditary
non-polyposis colorectal cancer (HNPCC) syndrome
harbour germline-inactivating mutations in MMR
genes'®**73!, MMR deficiency in sporadic MSI tumours is
usually the result of CpG island promoter methylation
and hence inactivation of the MLHI1 geneM’lS, which
encodes a crucial player in the MMR pathway.
This promoter methylation does not stand on its own,
but is accompanied by widespread methylation of pro-
moters throughout the genome, a phenomenon known
as CpG island methylator phenotype (CIMP). CIMP-high
MSI tumours are furthermore characterised by the
frequent presence of mutations in the BRAF onco-
genel432-35,

Over the last 15 years it has become more widely
accepted that BRAF mutation and CIMP-high phenotype
are molecular features accumulated during a distinct
neoplastic pathway, the serrated pathway (reviewed in
ref. *°). These specific changes appear to be crucial first
steps in the pathway, given that they can already be
detected in sessile serrated adenomas, whereas high MSI is
only detected at later stages®**”. The early presence of
CIMP and the BRAFY**°F oncogene might be functionally
linked: it has been suggested that the BRAF oncogene
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directly contributes to the instalment of CIMP through
direction of a repressor complex including DNA methyl-
transferase 3B towards CpG islands*®. The tumour sup-
pressor gene p1l6INK4a is epigenetically silenced in CIMP
and this might be used to overcome BRAF-linked onco-
gene-induced senescence to drive progression from sessile
serrated adenomas to hypermutated MSI carcinoma®>*°,

MSI and non-hypermutated tumours can not only be
distinguished using the mentioned (epi)genetic features,
but also display divergent gene expression patterns, further
corroborating that these carcinomas should be regarded as
distinct entities*"*>. Discrimination between the two is
both prognostic and predictive for response to certain
therapies. MSI is associated with a good prognos at stage
I-1II and these tumours do not recur or metastasise
frequently. If they do, overall survival is significantly
decreased compared to microsatellite stable tumours>*>**,
Clinical trials have revealed that MSI patients should not
be treated with 5-FU as they do not benefit or as outcome
is negatively affected in stage II disease®>*®, These exam-
ples highlight that determining MSI status is clinically
relevant, but unfortunately is not always standard of care.
Additionally testing for the presence of the BRAFY®*’F
mutation can further distinguish between hereditary and
sporadic MSI cancer, as this mutation is rarely found in
the hereditary form of the disease®’.

Gene expression-based profiling of colon cancer

MSI status and a few mutations can be used as prog-
nostic markers, but they fail to accurately select all poor
prognosis patients. Over the last 10-15 years the focus
has therefore shifted towards employing gene expression
patterns as prognostic and predictive markers, an
approach that captures a broader perspective on inter-
tumour heterogeneity; it measures both differential
activity of cell signalling pathways in cancer cells that is
not necessarily regulated by mutations alone, and takes
the make-up and influence of the tumour microenviron-
ment into account.

Colon cancer outcome prediction

Two landmark studies utilised microarrays on primary
breast cancer samples to deduce a 70-gene classifier to
stratify patients into good and poor prognosis subsets***°.
A second approach uses a quantitative reverse tran-
scriptase PCR gene expression panel as a prognostic tool
for oestrogen receptor positive breast cancer”. Both
platforms have been adapted to predict prognosis in stage
II and III colon cancer and are known as ColoPrint® and
Oncotype DX®, respectively. The latter can additionally
predict benefit from treatment with 5-FU and leucov-
orin® ™3, Neither of the two commercially available
assays are however part of current standard clinical care
for colon cancer patients™>*,
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Over 20 additional gene signatures designed to identify
poor prognosis patients have been published (summarised
in ref. >°). Although these signatures may provide clinical
use in terms of identification of patients that have higher
risk of recurrence, they do not provide insight into the
underlying reason. It is important to realise that recur-
rence for stage III patients may result from the aggressive
nature of tumour cells, prompting a higher propensity for
recurrence or early metastatic spread (poor prognosis), or
from inferior response to treatment (poor prediction).
Therefore, these signatures ignore gene regulatory infor-
mation that might be relevant for understanding specific
tumour biology that underlies the differential outcome.

Alternatively, more holistic molecular classification
efforts have therefore been made to fully capture colon
cancer heterogeneity, either using supervised approaches to
study specific cell signalling pathway activity, or preferring
unsupervised hierarchical clustering methods. These
methods could provide insight into what biological pro-
cesses fuel aggressive behaviour of cancer cells and what
mechanisms are responsible for insensitivity to therapies.

Supervised, biology-driven clustering of colon cancer

The benefit of looking at gene expression signatures
rather than mutations alone to study pathway regulation
is exemplified by the observations that supervised analysis
can be used to detect subsets of colon cancer in which the
BRAF, KRAS and/or PIK3CA genes are not mutated, but
gene expression patterns nevertheless match those of
mutated tumours®®>’. Hence, adherence to this pattern
can point out patients in which oncogenic pathway acti-
vation is achieved through less frequent mutations or
through non-genetic mechanisms. Importantly, these
tumours behave similarly as compared to their mutated
peers; for instance, BRAF-like tumours are equally asso-
ciated with poor prognosis, but might be sensitive to
microtubule-targeting chemotherapeutics®>*® and EGFR-
activated cancers do not respond to cetuximab, but might
be sensitive to drugs targeting downstream effectors in
this pathway””.

Other supervised efforts trying to implement biologi-
cally relevant information dichotomised colon cancer
based on low or high expression of gene signatures
associated with normal ISC or cancer stem cells
(CSC)*>®°. The underlying notion of this approach was
that CSC fuel tumour growth and give rise to different
cancer cell types in the tumour, and that high CSC sig-
nature expression functions as a surrogate measure for
augmented CSC presence’®”*™®*, As in other tumour
types, ISC/CSC-like expression patterns in colon cancer
were associated with low overall survival rates®”®%®%,
Surprisingly, high expression of Wnt signalling target
genes was associated with good prognosis, even though
activation of this pathway is a hallmark of the ISC and
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CSC state®®*>®, It has therefore been suggested that
adherence to the ISC/CSC signatures reflects the rela-
tively undifferentiated nature of the tumour, rather than
the abundance of Wnt-active CSC®. Later unsupervised
clustering approaches support this notion, as they,
amongst others, identify a highly Wnt active cluster and in
some cases a separate stem cell-like cluster®~®°.

The consensus molecular subtypes of colorectal cancer

Although supervised clustering strategies were prog-
nostic and predictive to a certain extent, forcing all
tumours into two subtypes probably does not acknowl-
edge the full heterogeneous biology of colon cancer; MSI
cancers are for example not recognised as a separate
group. Early unsupervised clustering methods revealed
that more than two flavours of colon cancer most likely
exist, although these studies did not discuss biological
mechanisms associated with each cluster, nor did they
link differential gene expression patterns to prognosis and
therapy response'*>>*!, Several research groups set out to
integrate this information in unsupervised clustering,
leading to the separation of colon cancer into 3—6 distinct
subtypes, depending on the choice of gene expression
analysis platforms, bioinformatics approach and statistical
analyses'*®*~7*, Although the number of subtypes iden-
tified diverged, it soon became apparent that some key
biological characteristics were shared between subtypes
from different studies’”. All approaches distinguished
a cluster comprised of MSI/CIMP-high tumours, a
mesenchymal/stem cell-like cluster and clusters in which
gene expression patterns were observed that matched
patterns associated with (subsets) of epithelial cells in the
normal colon. An international consortium encompassing
all the researchers originally reporting on the gene
expression-based classification systems, consolidated
separate findings into one overarching stratification sys-
tem, the CMS (summarised in Fig. 1)73,

Four subtypes are described that, importantly, are linked
to outcome: in stage I-III colon cancer, CMS4 patients
present with the poorest overall survival, and CMS1 pre-
sents with the poorest outcome in the metastatic setting,
whereas survival rates after relapse are higher in CMS2
tumours’®. These findings were further corroborated in
independent clinical trials retrospectively analysing CMS
status of metastatic colorectal cancer patientsm’75 .

Differential outcome can be partially explained by the
biological features of each subtype: CMS1 represents the
MSI/CIMP-high cancers displaying high immune cell
infiltration and harbouring the majority of BRAFY¢F
mutations present in the dataset. CMS2 and CMS3 are
alike and share high expression of an epithelial signature,
but differ in subtle ways. The CMS2 subtype is also
termed the canonical subtype because it is characterised
by high levels of CIN and high expression of Wnt and
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Fig. 1 Key characteristics of CMS and CRIS subtypes and their inter relatedness. Defining features of the CMS (top) and CRIS (bottom) subtypes
are summarised in the respective tables. The relationship between classification systems is illustrated by the Sankey diagram in the middle. A total of
119 established cell lines (N = 91) and primary cell and organoid cultures (N = 28) could be assigned with high confidence using both classifiers
Colours of nodes correspond to the respective CMS and CRIS subtypes in the tables, size of the nodes reflects the number of cultures adhering to
that particular subtype. For comparison with patient CMS-CRIS distribution, please refer to the publication of Isella et al®°.
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MYC target genes. KRAS mutations are enriched in
CMS3. This subtype displays high activation levels of
metabolic pathways and is therefore also described as the
metabolic subtype. CMS4 expresses high levels of genes
associated with a mesenchymal phenotype, illustrated by
activation of the epithelial-mesenchymal transition
(EMT) and TGFp pathways. Mesenchymal features have
been linked to poor prognosis in various other cancer
types’®. CMS4 is further characterised by high stromal
content and infiltration of lymphocytic and monocytic
immune cells”’. It is important to note that while some
mutations might be significantly more frequent in one
subtype over the other, none are exclusively present in
one CMS class. The differential gene expression sig-
natures, linked to distinctive pathway activity between
CMS subtypes, do however illustrate that the subtypes are
biologically distinct and highlight that this is installed
beyond the presence of genetic alterations. It furthermore
makes it plausible that they can be targeted with specific
classes of drugs as discussed later.

It has been suggested that biological differences between
CMS subtypes are in part installed at the premalignant
state. Expression patterns of SSA obtained from serrated
polyposis syndrome patients have been connected to the
CMS1 and CMS4 subtypes, whereas tubular adenomas
from familial adenomatous polyposis patients bear resem-
blance to the epithelial subtypes®®’®. Other classification
efforts on precursor lesions have been described and
categorise most hereditary and sporadic tubular adenomas
into the epithelial subclasses CMS2 and CMS3, depending
on the strategy employed. The majority of sporadic and
serrated polyposis syndrome-derived sessile serrated ade-
nomas and hyperplastic polyps classify as CMS1 in these
analyses and CMS4-like adenomas are detected at very low
incidence’”®°, This discordance suggests that although
mesenchymal features may be apparent in sessile serrated
adenomas, they are not as pronounced as in CMS4 cancers.
We therefore suggest that while tubular and sessile serrated
adenomas may be predisposed to transform into a carci-
noma of a particular CMS subtype, further oncogenic
transformation and microenvironmental cues during pro-
gression are needed to definitively install the biological
programs associated with the individual subtypes. One of
those cues might be high levels of TGFp that push sessile
serrated adenomas towards a more CMS4-like rather than
a CMS1-like state”®.

Interestingly, the patterns in activity of specific biological
pathways associated with each CMS subtype can be
extrapolated to subtypes identified in carcinomas of other
gastrointestinal origin. Elaborate discussion of this obser-
vation goes beyond the scope of this review, and it has
been diligently reviewed elsewhere’®. We would however
like to point out an important message that can be distilled
from this: these tumours originate from unique tissue
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types, each using organ-specific gene expression pro-
grams and each influenced by microenvironments
composed of varying cell types. The overlap in subtype
characteristics could point to epithelial cells using spe-
cific routes towards the development into carcinoma
cells that lead to similar behaviour of these tumours.
Additionally, it creates an opportunity to use the same
treatment regimen for tumours originating from dif-
ferent tissues that nevertheless adhere to a similar
subtype. An alternative explanation for the overlap in
subtype characteristics across tumour types is that it
does not represent distinct biological behaviour of the
epithelial cancer cell compartment, but rather reflects
the attraction of a unique microenvironment consisting
of different cell types.

Caveats of the CMS and alternative classification strategies

It is evident that subdivision of colon cancer in CMS is
not only driven by gene expression profiles derived from
the tumour cells, but that it is highly influenced by the
abundance and composition of the microenvironment.
This is especially apparent in CMSI, in which relatively
high numbers of immune cells infiltrate the tumour, and in
CMS4 where the high expression of EMT and TGFj} target
genes can in part be attributed to an ongoing desmoplastic
reaction recruiting high amounts of fibroblasts’**' %, The
dependence of the classification on the microenvironment
also implies that the sampling site of the tumour piece may
impact on CMS classification, as the stromal make-up can
differ between specimens. It has indeed been noted that
CMS assignment is discordant between samples obtained
from the same patient, which holds true when comparing
multiple biopsies of the primary tumour, samples acquired
from the invasive front and tumour core, or from primary
and metastatic sites®*®’,

Partial reliance on stromal gene expression for CMS
classification is furthermore illustrated by the fact that
stratification of preclinical models is complicated by the
absence of stromal cells. The gene expression profile of
cancer cell lines is solely derived from epithelial cells,
while the stromal compartment of patient-derived xeno-
grafts (PDX) is derived from immune-deficient mice that
lack B-, T- and often NK-cells. Depending on the platform
used, the murine contribution can be partially detected
(array-based analysis is optimised for human sequences)
or can be analysed separately (RNAseq)**°. Never-
theless, assignment of all subtypes, including the
mesenchymal ones, to large cancer cell line panels has
been achieved by multiple groups. Irrespective of the
distinct bioinformatics analyses used, the majority of cell
lines or primary cultures are concordantly subtyped, and
switches in classification usually occur between the rela-
ted CMS2/CMS3 and CMS1/CMS4 subtypes®®™*~*2,
Taken together, this indicates that CMS-associated
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biology is still captured in these models. Similarly,
assigning CMS to PDX models is feasible although this
proved to require further adaptation of the bioinformatics
method. It has been reported that if the patient-derived
CMS random forest classifier is applied, PDX models are
not classified as CMS4, specifically because murine stro-
mal signals are not measured effectively®" %3 Never-
theless, this can be overcome by rebuilding classifiers
enriched for genes expressed in the epithelial fraction, and
these adapted classifiers perform well on tumours from
patients and on PDX models. In addition, such epithelial-
enriched classifiers actually stratify cell lines more opti-
mally compared to the CMS random forest classifier
alone®*?*%*, This implies that specific CMS features are
locked in the tumour cells and that these cells are likely
responsible for the manipulation of the microenviron-
ment, yielding stromal-rich tumours in CMS4 or immune
cell-rich tumours in CMS1. In agreement, the validity of
these PDX classifications was further substantiated by the
observation that tumours with a given subtype as defined
for the patient’s specimen maintained their subtype in the
PDX model in the majority of the cases.

Such a shift in focus towards cancer cell intrinsic
expression patterns in the tumour setting has been pro-
posed to resolve some of the issues associated with CMS
classification. Gene expression data acquired from whole
tumour samples however does not allow for distinction
between cancer cell and stroma-derived signals. Single
cell RNAseq can resolve this issue in the future, but
researchers reasoned that the unique composition of PDX,
with human cancer cells and mouse stroma, would in the
meantime allow for identification of signals solely
expressed in the tumour epithelium by employing two
bioinformatical filtering strategies. Firstly, microarray
probes cross-hybridising with murine transcripts were not
included in further analyses as signals from such probes
cannot be assigned faithfully to human or mouse RNA. To
further enrich for transcripts of epithelial origin, RNA
sequencing data was obtained for a number of PDX. If
more than 50% of the total expression of a gene originated
from mouse transcripts, it was excluded in the down-
stream analysis®”. These two filtering strategies allowed for
unsupervised stratification of colon cancer into five CRC
intrinsic signature (CRIS) subtypes that capture epithelial-
specific gene expression profiles driven by oncogenic
mutations and pathways (summarised in Fig. 1).

CRIS-A consists of KRAS-mutated samples and MS],
BRAF-mutated samples and is characterised by glycolytic
metabolism and inflammatory signals. CRIS-B tumours are
poorly differentiated and display active TGFp and EMT
signalling. CRIS-C encompasses CIN tumours with wildtype
KRAS status, MYC amplification and increased EGFR
pathway activity. CRIS-D is associated with high Wnt,
fibroblast growth factor receptor (FGFR) and insulin-like
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growth factor receptor (IGFR) pathway activity, of which the
latter is in part achieved by IGF-2 amplification. CRIS-E is
likewise characterised by high Wnt activity and TP53
mutations are prevalent in this subtype. Significant overlap
exists between CRIS and CMS subtypes, although differences
are described (Fig. 1). CRIS-A is mainly constituted of CMS1
and CMS3 tumours. CRIS-B incorporates the other
CMSI1 samples and a subset of CMS4 samples. The rest of
the CMS4 tumours are equally distributed over CRIS-C,
CRIS-D and CRIS-E, as are the CMS2 tumours®. Impor-
tantly, the CRIS classifier is better suited to concordantly
classify multiple samples obtained from the same patient,
irrespective of the sampling site, as its focus on the tumour
cell intrinsic phenotype reduces the influence of stromal
constitution®>®, Consequently, different preclinical models,
such as cell lines or PDX models, can also be robustly clas-
sified without adapting the CRIS gene set®. As illustrated in
Fig. 1, distribution of colon cancer cell lines over the
respective CRIS and CMS classes follows the trends observed
in patient samples, although small differences exist.

The CRIS classification system is thus fitted to capture
oncogenic driver programs specifically active in the can-
cer cell compartment of a tumour. As will be discussed in
the next section, this provides insight in therapy sensi-
tivities, but filtering out stromal contribution to gene
expression patterns in tumours comes with drawbacks as
well. This is firstly illustrated by the observation that the
prognostic value of CRIS is improved when information
about the abundance of fibroblast infiltration is added,
which to some extent results in a strategy reminiscent of
the identification of the poor prognosis, stromal-rich
CMS4 subgroup®. Furthermore, although the derivation
of the CRIS classifier based on PDX allows for distin-
guishing cancer cell intrinsic features, it also introduces a
bias due to two inherent limitations: (i) signalling
incompatibility exists between murine and human
ligands/receptors, and certain biological programs and
feedback loops between the compartments are thus not
completely recapitulated in PDX, and (ii) not all tumours
successfully establish a PDX and it has been reported that
some CMS classes are more capable of forming serially
transplantable xenografts compared to others’. It must
also be considered that predominant expression of a gene
in the stroma does not mean it cannot be differentially
expressed in the cancer cell compartment, and overall
exclusion of such genes from further analysis can also
neglect relevant biology.

Colon cancer heterogeneity is captured in preclinical
model systems and is linked to differential therapy
responses

Established cell lines and genetically engineered mouse
models (GEMM) traditionally comprised the model systems
available for preclinical research, but recent advances allow
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Patients Cell lines

BRAF V600E + (Combination of)

[72]
Y- TGFBR2, RNF43, ZNRF3,
a2 p16INK4A, MLH1 (103)
z<
['4
o BRAF V60E — GREM1
o (+ RSPO2 Fusion) (104)
MSH2 (115, 116)
” BRAF V600E (118)
= (+TP53 or p16INK4A) (120)
w
) KRAS — p16INK4A (117)

PI3BKCA (119)

Primary lines

EPITHELIAL MESENCHYMAL-like

(Combination of)
APC, KRAS, TP53, SMAD4 (27, 99-101)

APC + (Combination of)
KRAS, TP53, Notch ICD (114

Max. Triple Combination of
APC, KRAS, TP53, TGFBR2 (127)

Fig. 2 CMS subtypes in preclinical models. Top: Pie charts illustrating distribution of CMS subtypes in different preclinical models compared to
distribution amongst patients as reported in Guinney et al.”®. Classifier used for cell lines is the support vector machine classifier developed and
trained as described in Linnekamp, van Hooff et al.”'. Datasets used for cell lines: GSE36133, GSE100478, GSE59857 and GSE68950. Datasets for
primary cell lines: GSE100549 and GSE100479 supplemented with additional primary spheroid culture gene expression profiles generated by RNAseq
in the laboratory of Prof. Dr. Giorgio Stassi in Palermo (unpublished data). (Primary) cell lines were allocated to a certain CMS class using the following
rules: (i) consistent CMS class prediction across all datasets with probability score >04. (i) Consistent CMS class prediction across all datasets with
probability score >0.5 in 33% of datasets and >0.35 in all other datasets. (iii) Probability score >0.5 for one consistent CMS class in 66% of the datasets.
CMS class prediction in other datasets could differ from majority, but with probability score <0.5. (iv) Probability score cut-off was set to >0.5 if cell
line was present in a single dataset. PDX classification and distribution obtained from and implemented according to Prasetyanti et al.?>. Bottom:
Overview of reported CRISPR-edited organoids and genetically engineered mouse models that reflect distinct biology of human adenomas and
colon carcinomas. Numbers in between parentheses refer to original publication.

None Reported

KRAS —TP53 (+ Notch ICD) (114)
APC-KRAS —-TP53 - TGFBR2 (127)

for generation of different patient-derived models. We have
already alluded to direct PDX, in which a piece of human
tumour is transplanted in immunocompromised mice”
Patient material can also be used to establish primary cell
lines grown in suspensionGZ, and seminal work has descri-
bed protocols for in vitro 3D culture and expansion of both
mouse and human organoids derived from healthy and
tumour tissue’”?®. Both culture types can be grafted into
immune-deficient mice to procure indirect PDX. Further-
more, step-wise introduction of mutations in driver genes in
organoids from healthy tissue can be used to model the full
spectrum of adenoma-to-carcinoma sequence, including
metastasis>”** %,

Importantly, all these different types of preclinical models
capture the various facets of colon cancer heterogeneity,
including CRIS and CMS subtypes, illustrated by a vast
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range of published repositories65’66‘9°_93’95’100‘101’105_112.

Before we discuss patterns in therapy sensitivity and
resistance that have been identified, we would like to point
out that every preclinical model is associated with a certain
level of bias in terms of the subgroups that it represents
best (Fig. 2). GEMM for colon cancer were typically driven
by APC loss and these mice develop tubular adenomas and
epithelial-like tumours'**"'*, Novel conditional GEMM
have emerged over the last years in which MMR genes are
deleted to model MSI colon cancer''>''® or in which APC
is not included as a driver gene. These non-canonical
GEMM typically give rise to serrated-like adenomas and
more invasive and aggressive colon cancer #7120 Tra-
ditional cell lines are enriched for MSI positivity, and pri-
mary cell line and organoid cultures adhere more to the
CMS2 subtype™. Other patient-derived models are likewise
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associated with biases: the original organoid establishment
protocol is less suitable for generating serrated polyp cul-
tures”'?, whereas direct PDX appear to be more suc-
cessfully derived from CMS1 and CMS4 tumours”. Fully
individualised therapy selection based on an in vitro or
in vivo model is therefore still challenging, as one cannot
know up front what technique would establish a personal
preclinical model for a particular patient. Studying the
responses across panels of models has however yielded
valuable insights.

Initial clinical trials using vemurafenib to target the
BRAFY®F oncogene failed in colon cancer, despite its
effectiveness in melanoma'?'. Preclinical data revealed that
feedback activation of the MAPK pathway through EGFR
was the underlying mechanism of resistance, and recent
trials reported that combination of vemurafenib with MAPK
pathway inhibitors overcomes resistance'**"'**, Various
mechanisms leading to cetuximab insensitivity were elicited
in PDX, amongst which mutations in various components of
MAPK signalling (upstream receptor tyrosine kinases,
PTEN, PI3K, BRAF, KRAS and NRAS)****''!. Pathway
hyperactivation through amplification or upregulation of
ligands and receptors is also frequently observed, such as
human epidermal growth factor receptor 2, hepatocyte
growth factor receptor and FGFR1 amplification and IGF2
overexpressionno’l11’125’126. Drugs to target these compen-
sation mechanisms are available, and can indeed be suc-
cessfully combined with cetuximab to generate better
responsesm’l%. As with drug resistance, patterns can be
observed in cell lines and PDX that predict sensitivity to
cetuximab, including high Wnt and Myc pathway activity.

It should be noted that the described escape mechan-
isms and indicators for sensitivity signify specific CMS
and CRIS subtypes, in patient samples and in preclinical
models. CMS2-like and CRIS-C tumours display high
Wnt and Myc activity and are associated with cetuximab
response. A subgroup of CMS2 classifies as CRIS-D
in which the FGFR and IGF signalling pathways are
activated, and these samples do not respond to cetux-
imab®®7#%9792 CMS4-like cell lines do not respond
to cetuximab either and are additionally associated
with poorer responses to chemotherapy with 5-FU and
oxaliplatin®®?%%2,

The discussed examples focus on tumour cell intrinsic
differences in pathway activation that are recapitulated in
model systems. Increased stromal infiltration in the
CMS4 subtype is similarly translated to PDX models™,
suggesting that CMS4 cancer cells actively attract this
microenvironment and that the tumour—stroma interaction
could pose as a targeting possibility. Two recent studies
using novel mouse models that give rise to primary tumours
and spontaneous metastases support this notion'***?’, The
aggressive tumours were characterised by presence of
reactive stroma, stimulated by TGEFp, and activation of
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CMS4 and CRIS-B-associated gene expression pathways.
Critically, inhibition of TGFp decreased metastatic out-
growth and caused a switch from an immunosuppressive
microenvironment to one that allows for T-cell infiltration.
The existence of an immunosuppressive environment has
been noted before in CMS4 cancer specimens’”*” and these
mouse studies suggest that TGFp inhibitors can be com-
bined with immune checkpoint inhibition to elicit an
immune response’'*'?’. They furthermore reveal that
studying the tumour—stroma interaction is an avenue worth
exploring to infer additional candidates for targeted ther-
apy'?®. In vitro co-culture experiments, dissection of mouse
and human RNA expression patterns in PDX models
through RNA sequencing or single cell RNA sequencing of
human tumours can be used to reveal these interactions.

Translation of CMS to the clinic

A number of criteria still need to be met to warrant
implementation of CMS subtyping in clinical practice.
First, the laboratory and informatics procedures currently
employed for classification need to be improved and
adapted to better suit the clinical reality. Second, the
predictive value of CMS for therapy response needs to be
corroborated by (prospective) clinical trials. In this sec-
tion, we aim to shed light on the technical challenges
faced to robustly classify patient samples and the avenues
that are currently explored to resolve these issues. We will
then give an overview of what we have learned so far
about therapy outcome prediction by retrospective ana-
lysis of clinical trials.

Optimisation of CMS classification for clinical applicability

Gene expression profiling is readily influenced by the
practical methods used to obtain and prepare RNA for
analysis and is affected by the platform chosen to generate
the expression profile. Normalisation issues additionally
complicate CMS single sample prediction’*"**'%, Fur-
thermore, the majority of the RNA samples obtained for
the CMS discovery datasets was extracted from fresh
frozen tumour samples, whereas clinical specimens are
normally formalin-fixed and paraffin-embedded (FFPE)
before storage. The FFPE process generates low quality
RNA due to fragmentation and degradation over time and
these shorter fragments are more difficult to quantify
using RNAseq, microarray or PCR-based techniques, but
novel technology offers a solution to enable expression
profiling on FFPE material. The NanoString platform uses
short probes (35-50 nucleotides) to capture and quantify
mRNA sequences and is therefore more compatible with
fragmented RNA. Three recent studies have built custo-
mised NanoString probe sets and successfully classified
panels of FFPE material according to CMS”>*”'3!, CMS
classification between patient-matched FFPE and fresh
frozen material was concordant, although sample size was
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limited”>®”. Formal cross-validation of newly developed
NanoString classifiers and the original consortium random
forest classifier will have to be extended to a larger panel of
matched samples to fully support the transformation
towards a NanoString-based CMS classification protocol.

To aid the transition to the use of FFPE material, others
have also assessed if immunohistochemistry for CMS-
specific markers (CDX2, FRMD6, HTR2B and ZEBI)
allows for classification. Combining these markers with
pan-cytokeratin staining and MSI status facilitates stra-
tification into CMSI1, epithelial CMS2/CMS3 and
mesenchymal CMS4 classes. The added benefit of
immunohistochemistry is that the pathologist can speci-
fically look at protein expression in the cancer cell frac-
tion, thereby reducing the influence of stromal
infiltration on CMS classification. Non-concordant CMS
assignment of multiple biopsies from the same patient
might thereby be overcome, but it then needs to be
established if staining intensity for the CMS markers is
similar in multiple regions of the same tumour®®. Along
that line of thinking, immunohistochemistry on FFPE
material and review by a pathologist should be incorpo-
rated in the CMS classification allowing for a more
consistent RNA isolation protocol. Preferably, CMS
testing should be performed on sections that are routi-
nely used for pathological diagnosis.

Therapy efficacy in subtypes: discovery in preclinical
setting and retrospective analysis of trial samples

Over the last few years CMS(-affiliated) subtyping
has been retrospectively applied to publicly available
patient datasets and clinical trial cohorts to define
predictive markers for therapy efficacy (summarised in
Table 1)66:67717475132-137 \y/o are aware of the fact that
the majority of the used cohorts consist of metastatic
colon cancer patients and differences between datasets
(patient characteristics, trial inclusion and exclusion cri-
teria, treatment composition) and methods used for CMS
classification exist. For an extensive discussion of the
various intricacies that should be considered for the
interpretation of these studies, we would like to point to
refs. %710 Nevertheless, clinically relevant patterns in
terms of therapy response can be distilled from these
analyses, and we will highlight them in this section.

Not all stage II and III colon cancer patients respond to
adjuvant chemotherapy, with recent data suggesting that
CMS subtype-specific sensitivities can potentially explain
this variation. Multiple studies have pointed out that 5-
FU-based therapies, also when supplemented with oxali-
platin, only benefit epithelial CMS2-like patients and not
those adhering to a CMS4-like subtype”"'*"'*?, Given the
poor prognosis that is already associated with the
CMS4 subtype, these clinical studies call for consideration
of other chemotherapeutics to increase overall survival. A
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potential successful alternative was suggested for the
stem-like colon cancer subtype, which is reminiscent of
the CMS4 subtype. At metastatic disease these tumours
appeared more sensitive to FOLFIRI, in which oxaliplatin
is replaced for irinotecan®. Although available sample
sizes of patients were initially too small to fully support
the potential of irinotecan use'**'**, two independent
clinical trials with larger patient cohorts have since sub-
stantiated the enhanced effect of FOLFIRI over FOLFOX
in CMS4 in the metastatic setting'*>'*°,

Metastatic patients are currently treated with FOLFIRI
or FOLFOX supplemented with targeted therapies bev-
acizumab or cetuximab, depending on KRAS mutation
status’. Clinical trials and preclinical studies have however
described that further separation of patients or models
according to CMS subtype is relevant for predicting
cetuximab efficacy. Patients adhering to a mesenchymal
subtype do not benefit from monotherapy with cetuximab
regardless of the KRAS mutation status®®?'~**'*2, Com-
bining cetuximab with FOLFOX does not provide better
results; overall survival is not increased in CMS4-like
patients”>'?”. Another trial however revealed opposing
results, as CMS4 patients responded better to cetuximab
addition than to bevacizumab, under the condition that
FOLFIRI forms the chemotherapeutic backbone™®. It
remains to be elucidated whether the conflicting outcomes
between trials are, in part, caused by the higher sensitivity
of CMS4 to FOLFIRI compared to FOLFOX'?*13%1%5 1t
however underlines that the best combination of che-
motherapy plus bevacizumab or cetuximab can be differ-
ent for each CMS subgroup. Preclinical models can help in
defining the best combination for each subtype in order to
guide the design of future clinical trials.

The benefit of bevacizumab over cetuximab in MSI/
CMS1 classes of tumour is also not supported by all
trials”#’>!?*, although the hypermutated status and
abundant immune infiltration observed in these tumours
has made them candidates for immune checkpoint inhi-
bition. Treatment of metastatic MSI colorectal cancer
patients has yielded good therapy responses in a subset of
patients, and recent genetic analysis of tumours has
revealed that a higher load of genomic insertions and
deletions due to MMR deficiency can be used as a
selective marker for better therapy response’”"'**!*7,

Taken together these results demonstrate that CMS
classification can be used to explain differences in response
to the therapies currently used in the clinic and, critically,
that poor prognosis CMS4 tumours tend not to respond.

Concluding remarks

To summarise, colon cancer is a heterogeneous disease
marked by various molecular features such as mutations,
CIN, MSI status and gene expression patterns. These fac-
tors are mostly disregarded in the clinic and we have
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pointed out that they should be incorporated in clinical
decision making, as they are relevant for prognosis and
therapeutic response.

The CMS and CRIS classification strategies integrate
differential activity of biological programs between
tumours beyond single gene mutations, and can impor-
tantly be linked to therapy sensitivity or resistance in
specific subtypes, making them an attractive method to
stratify colon cancer patients.

Continued efforts to devise a standardised CMS classi-
fication method that functions reliably on FFPE material
are being made. Its completion would aid translatability to
the clinic, although formal integration would only be
warranted if clinical trials support the added value of CMS
classification for patient prognosis or prediction of ther-
apy response. To fulfil that need, CMS classification
should be applied retrospectively to trials, but it should
additionally be incorporated in prospective studies. In that
regard the colon cancer field can learn from the i-SPY 2
trial that segregates breast cancer patients in 10 distinct
molecular subgroups, adapts the treatment plan accord-
ingly and that allows for rapid influx of experimental
drugs into the trial'*®. Prospective studies taking CMS
stratification into account are currently being set up. We
have discussed that preclinical models capture the het-
erogeneous biology of colon carcinomas and we therefore
believe that they should be employed to design novel
treatment strategies that could yield better results than
the current standards. The most promising findings
should eventually be tested in these prospective trials.
This will ultimately facilitate moving beyond the one-size-
fits-all treatment currently used and may hopefully
improve disease outcome for more colon cancer patients.
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